JSON Data Type
Stores JavaScript Object Notation (JSON) documents in a single column.
This feature is beta and is not production-ready. If you need to work with JSON documents, consider using this guide instead.
If you want to use JSON type, set enable_json_type = 1
.
To declare a column of JSON
type, use the following syntax:
<column_name> JSON(max_dynamic_paths=N, max_dynamic_types=M, some.path TypeName, SKIP path.to.skip, SKIP REGEXP 'paths_regexp')
Where:
max_dynamic_paths
is an optional parameter indicating how many paths can be stored separately as subcolumns across single block of data that is stored separately (for example across single data part for MergeTree table). If this limit is exceeded, all other paths will be stored together in a single structure. Default value ofmax_dynamic_paths
is1024
.max_dynamic_types
is an optional parameter between1
and255
indicating how many different data types can be stored inside a single path column with typeDynamic
across single block of data that is stored separately (for example across single data part for MergeTree table). If this limit is exceeded, all new types will be converted to typeString
. Default value ofmax_dynamic_types
is32
.some.path TypeName
is an optional type hint for particular path in the JSON. Such paths will be always stored as subcolumns with specified type.SKIP path.to.skip
is an optional hint for particular path that should be skipped during JSON parsing. Such paths will never be stored in the JSON column. If specified path is a nested JSON object, the whole nested object will be skipped.SKIP REGEXP 'path_regexp'
is an optional hint with a regular expression that is used to skip paths during JSON parsing. All paths that match this regular expression will never be stored in the JSON column.
Creating JSON
Using JSON
type in table column definition:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42}, "c" : [1, 2, 3]}'), ('{"f" : "Hello, World!"}'), ('{"a" : {"b" : 43, "e" : 10}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json────────────────────────────────────────┐
│ {"a":{"b":"42"},"c":["1","2","3"]} │
│ {"f":"Hello, World!"} │
│ {"a":{"b":"43","e":"10"},"c":["4","5","6"]} │
└─────────────────────────────────────────────┘
CREATE TABLE test (json JSON(a.b UInt32, SKIP a.e)) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42}, "c" : [1, 2, 3]}'), ('{"f" : "Hello, World!"}'), ('{"a" : {"b" : 43, "e" : 10}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json──────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3]} │
│ {"a":{"b":0},"f":"Hello, World!"} │
│ {"a":{"b":43},"c":[4,5,6]} │
└───────────────────────────────────┘
Using CAST from String
:
SELECT '{"a" : {"b" : 42},"c" : [1, 2, 3], "d" : "Hello, World!"}'::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Using CAST from Tuple
:
SET enable_named_columns_in_function_tuple = 1;
SELECT (tuple(42 AS b) AS a, [1, 2, 3] AS c, 'Hello, World!' AS d)::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Using CAST from Map
:
SELECT map('a', map('b', 42), 'c', [1,2,3], 'd', 'Hello, World!')::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Using CAST from deprecated Object('json')
:
SET allow_experimental_object_type = 1;
SELECT '{"a" : {"b" : 42},"c" : [1, 2, 3], "d" : "Hello, World!"}'::Object('json')::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
CAST from Tuple
/Map
/Object('json')
to JSON
is implemented via serializing the column into String
column containing JSON objects and deserializing it back to JSON
type column.
Reading JSON paths as subcolumns
JSON type supports reading every path as a separate subcolumn. If type of the requested path was not specified in the JSON type declaration, the subcolumn of the path will always have type Dynamic.
For example:
CREATE TABLE test (json JSON(a.b UInt32, SKIP a.e)) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42, "g" : 42.42}, "c" : [1, 2, 3], "d" : "2020-01-01"}'), ('{"f" : "Hello, World!", "d" : "2020-01-02"}'), ('{"a" : {"b" : 43, "e" : 10, "g" : 43.43}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json──────────────────────────────────────────────────┐
│ {"a":{"b":42,"g":42.42},"c":[1,2,3],"d":"2020-01-01"} │
│ {"a":{"b":0},"d":"2020-01-02","f":"Hello, World!"} │
│ {"a":{"b":43,"g":43.43},"c":[4,5,6]} │
└───────────────────────────────────────────────────────┘
SELECT json.a.b, json.a.g, json.c, json.d FROM test;
┌─json.a.b─┬─json.a.g─┬─json.c──┬─json.d─────┐
│ 42 │ 42.42 │ [1,2,3] │ 2020-01-01 │
│ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 2020-01-02 │
│ 43 │ 43.43 │ [4,5,6] │ ᴺᵁᴸᴸ │
└──────────┴──────────┴─────────┴────────────┘
If the requested path wasn't found in the data, it will be filled with NULL
values:
SELECT json.non.existing.path FROM test;
┌─json.non.existing.path─┐
│ ᴺᵁᴸᴸ │
│ ᴺᵁᴸᴸ │
│ ᴺᵁᴸᴸ │
└────────────────────────┘
Let's check the data types of returned subcolumns:
SELECT toTypeName(json.a.b), toTypeName(json.a.g), toTypeName(json.c), toTypeName(json.d) FROM test;
┌─toTypeName(json.a.b)─┬─toTypeName(json.a.g)─┬─toTypeName(json.c)─┬─toTypeName(json.d)─┐
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
└──────────────────────┴──────────────────────┴────────────────────┴────────────────────┘
As we can see, for a.b
the type is UInt32
as we specified in the JSON type declaration, and for all other subcolumns the type is Dynamic
.
It is also possible to read subcolumns of a Dynamic
type using special syntax json.some.path.:TypeName
:
select json.a.g.:Float64, dynamicType(json.a.g), json.d.:Date, dynamicType(json.d) FROM test;
┌─json.a.g.:`Float64`─┬─dynamicType(json.a.g)─┬─json.d.:`Date`─┬─dynamicType(json.d)─┐
│ 42.42 │ Float64 │ 2020-01-01 │ Date │
│ ᴺᵁᴸᴸ │ None │ 2020-01-02 │ Date │
│ 43.43 │ Float64 │ ᴺᵁᴸᴸ │ None │
└─────────────────────┴───────────────────────┴────────────────┴─────────────────────┘
Dynamic
subcolumns can be cast to any data type. In this case the exception will be thrown if internal type inside Dynamic
cannot be cast to the requested type:
select json.a.g::UInt64 as uint FROM test;
┌─uint─┐
│ 42 │
│ 0 │
│ 43 │
└──────┘
select json.a.g::UUID as float FROM test;
Received exception:
Code: 48. DB::Exception: Conversion between numeric types and UUID is not supported. Probably the passed UUID is unquoted: while executing 'FUNCTION CAST(__table1.json.a.g :: 2, 'UUID'_String :: 1) -> CAST(__table1.json.a.g, 'UUID'_String) UUID : 0'. (NOT_IMPLEMENTED)
Reading JSON sub-objects as subcolumns
JSON type supports reading nested objects as subcolumns with type JSON
using special syntax json.^some.path
:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : {"c" : 42, "g" : 42.42}}, "c" : [1, 2, 3], "d" : {"e" : {"f" : {"g" : "Hello, World", "h" : [1, 2, 3]}}}}'), ('{"f" : "Hello, World!", "d" : {"e" : {"f" : {"h" : [4, 5, 6]}}}}'), ('{"a" : {"b" : {"c" : 43, "e" : 10, "g" : 43.43}}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json────────────────────────────────────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":42,"g":42.42}},"c":[1,2,3],"d":{"e":{"f":{"g":"Hello, World","h":[1,2,3]}}}} │
│ {"d":{"e":{"f":{"h":[4,5,6]}}},"f":"Hello, World!"} │
│ {"a":{"b":{"c":43,"e":10,"g":43.43}},"c":[4,5,6]} │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
SELECT json.^a.b, json.^d.e.f FROM test;
┌─json.^`a`.b───────────────┬─json.^`d`.e.f────────────────────┐
│ {"c":42,"g":42.42} │ {"g":"Hello, World","h":[1,2,3]} │
│ {} │ {"h":[4,5,6]} │
│ {"c":43,"e":10,"g":43.43} │ {} │
└───────────────────────────┴──────────────────────────────────┘
Reading sub-objects as subcolumns may be inefficient, as this may require almost full scan of the JSON data.
Types inference for paths
During JSON parsing ClickHouse tries to detect the most appropriate data type for each JSON path. It works similar to automatic schema inference from input data and controlled by the same settings:
- input_format_try_infer_integers
- input_format_try_infer_dates
- input_format_try_infer_datetimes
- schema_inference_make_columns_nullable
- input_format_json_try_infer_numbers_from_strings
- input_format_json_infer_incomplete_types_as_strings
- input_format_json_read_numbers_as_strings
- input_format_json_read_bools_as_strings
- input_format_json_read_bools_as_numbers
- input_format_json_read_arrays_as_strings
Let's see some examples:
SELECT JSONAllPathsWithTypes('{"a" : "2020-01-01", "b" : "2020-01-01 10:00:00"}'::JSON) AS paths_with_types settings input_format_try_infer_dates=1, input_format_try_infer_datetimes=1;
┌─paths_with_types─────────────────┐
│ {'a':'Date','b':'DateTime64(9)'} │
└──────────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : "2020-01-01", "b" : "2020-01-01 10:00:00"}'::JSON) AS paths_with_types settings input_format_try_infer_dates=0, input_format_try_infer_datetimes=0;
┌─paths_with_types────────────┐
│ {'a':'String','b':'String'} │
└─────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : [1, 2, 3]}'::JSON) AS paths_with_types settings schema_inference_make_columns_nullable=1;
┌─paths_with_types───────────────┐
│ {'a':'Array(Nullable(Int64))'} │
└────────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : [1, 2, 3]}'::JSON) AS paths_with_types settings schema_inference_make_columns_nullable=0;
┌─paths_with_types─────┐
│ {'a':'Array(Int64)'} │
└──────────────────────┘
Handling arrays of JSON objects
JSON paths that contains an array of objects are parsed as type Array(JSON)
and inserted into Dynamic
column for this path. To read an array of objects you can extract it from Dynamic
column as a subcolumn:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES
('{"a" : {"b" : [{"c" : 42, "d" : "Hello", "f" : [[{"g" : 42.42}]], "k" : {"j" : 1000}}, {"c" : 43}, {"e" : [1, 2, 3], "d" : "My", "f" : [[{"g" : 43.43, "h" : "2020-01-01"}]], "k" : {"j" : 2000}}]}}'),
('{"a" : {"b" : [1, 2, 3]}}'),
('{"a" : {"b" : [{"c" : 44, "f" : [[{"h" : "2020-01-02"}]]}, {"e" : [4, 5, 6], "d" : "World", "f" : [[{"g" : 44.44}]], "k" : {"j" : 3000}}]}}');
SELECT json FROM test;
┌─json────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ {"a":{"b":[{"c":"42","d":"Hello","f":[[{"g":42.42}]],"k":{"j":"1000"}},{"c":"43"},{"d":"My","e":["1","2","3"],"f":[[{"g":43.43,"h":"2020-01-01"}]],"k":{"j":"2000"}}]}} │
│ {"a":{"b":["1","2","3"]}} │
│ {"a":{"b":[{"c":"44","f":[[{"h":"2020-01-02"}]]},{"d":"World","e":["4","5","6"],"f":[[{"g":44.44}]],"k":{"j":"3000"}}]}} │
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
SELECT json.a.b, dynamicType(json.a.b) FROM test;
┌─json.a.b──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┬─dynamicType(json.a.b)────────────────────────────────────┐
│ ['{"c":"42","d":"Hello","f":[[{"g":42.42}]],"k":{"j":"1000"}}','{"c":"43"}','{"d":"My","e":["1","2","3"],"f":[[{"g":43.43,"h":"2020-01-01"}]],"k":{"j":"2000"}}'] │ Array(JSON(max_dynamic_types=16, max_dynamic_paths=256)) │
│ [1,2,3] │ Array(Nullable(Int64)) │
│ ['{"c":"44","f":[[{"h":"2020-01-02"}]]}','{"d":"World","e":["4","5","6"],"f":[[{"g":44.44}]],"k":{"j":"3000"}}'] │ Array(JSON(max_dynamic_types=16, max_dynamic_paths=256)) │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────────────────┘
As you can notice, the max_dynamic_types/max_dynamic_paths
parameters of the nested JSON
type were reduced compared to the default values. It's needed to avoid number of subcolumns to grow uncontrolled on nested arrays of JSON objects.
Let's try to read subcolumns from this nested JSON
column:
SELECT json.a.b.:`Array(JSON)`.c, json.a.b.:`Array(JSON)`.f, json.a.b.:`Array(JSON)`.d FROM test;
┌─json.a.b.:`Array(JSON)`.c─┬─json.a.b.:`Array(JSON)`.f───────────────────────────────────┬─json.a.b.:`Array(JSON)`.d─┐
│ [42,43,NULL] │ [[['{"g":42.42}']],NULL,[['{"g":43.43,"h":"2020-01-01"}']]] │ ['Hello',NULL,'My'] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[['{"h":"2020-01-02"}']],[['{"g":44.44}']]] │ [NULL,'World'] │
└───────────────────────────┴─────────────────────────────────────────────────────────────┴───────────────────────────┘
We can avoid writing Array(JSON)
subcolumn name using special syntax:
SELECT json.a.b[].c, json.a.b[].f, json.a.b[].d FROM test;
┌─json.a.b.:`Array(JSON)`.c─┬─json.a.b.:`Array(JSON)`.f───────────────────────────────────┬─json.a.b.:`Array(JSON)`.d─┐
│ [42,43,NULL] │ [[['{"g":42.42}']],NULL,[['{"g":43.43,"h":"2020-01-01"}']]] │ ['Hello',NULL,'My'] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[['{"h":"2020-01-02"}']],[['{"g":44.44}']]] │ [NULL,'World'] │
└───────────────────────────┴─────────────────────────────────────────────────────────────┴───────────────────────────┘
The number of []
after path indicates the array level. json.path[][]
will be transformed to json.path.:Array(Array(JSON))
Let's check the paths and types inside our Array(JSON)
:
SELECT DISTINCT arrayJoin(JSONAllPathsWithTypes(arrayJoin(json.a.b[]))) FROM test;
┌─arrayJoin(JSONAllPathsWithTypes(arrayJoin(json.a.b.:`Array(JSON)`)))──┐
│ ('c','Int64') │
│ ('d','String') │
│ ('f','Array(Array(JSON(max_dynamic_types=8, max_dynamic_paths=64)))') │
│ ('k.j','Int64') │
│ ('e','Array(Nullable(Int64))') │
└───────────────────────────────────────────────────────────────────────┘
Let's read subcolumns from Array(JSON)
column:
SELECT json.a.b[].c.:Int64, json.a.b[].f[][].g.:Float64, json.a.b[].f[][].h.:Date FROM test;
┌─json.a.b.:`Array(JSON)`.c.:`Int64`─┬─json.a.b.:`Array(JSON)`.f.:`Array(Array(JSON))`.g.:`Float64`─┬─json.a.b.:`Array(JSON)`.f.:`Array(Array(JSON))`.h.:`Date`─┐
│ [42,43,NULL] │ [[[42.42]],[],[[43.43]]] │ [[[NULL]],[],[['2020-01-01']]] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[[NULL]],[[44.44]]] │ [[['2020-01-02']],[[NULL]]] │
└────────────────────────────────────┴──────────────────────────────────────────────────────────────┴───────────────────────────────────────────────────────────┘
We can also read sub-object subcolumns from nested JSON
column:
SELECT json.a.b[].^k FROM test
┌─json.a.b.:`Array(JSON)`.^`k`─────────┐
│ ['{"j":"1000"}','{}','{"j":"2000"}'] │
│ [] │
│ ['{}','{"j":"3000"}'] │
└──────────────────────────────────────┘
Reading JSON type from the data
All text formats (JSONEachRow, TSV, CSV, CustomSeparated, Values, etc) supports reading JSON
type.
Examples:
SELECT json FROM format(JSONEachRow, 'json JSON(a.b.c UInt32, SKIP a.b.d, SKIP d.e, SKIP REGEXP \'b.*\')', '
{"json" : {"a" : {"b" : {"c" : 1, "d" : [0, 1]}}, "b" : "2020-01-01", "c" : 42, "d" : {"e" : {"f" : ["s1", "s2"]}, "i" : [1, 2, 3]}}}
{"json" : {"a" : {"b" : {"c" : 2, "d" : [2, 3]}}, "b" : [1, 2, 3], "c" : null, "d" : {"e" : {"g" : 43}, "i" : [4, 5, 6]}}}
{"json" : {"a" : {"b" : {"c" : 3, "d" : [4, 5]}}, "b" : {"c" : 10}, "e" : "Hello, World!"}}
{"json" : {"a" : {"b" : {"c" : 4, "d" : [6, 7]}}, "c" : 43}}
{"json" : {"a" : {"b" : {"c" : 5, "d" : [8, 9]}}, "b" : {"c" : 11, "j" : [1, 2, 3]}, "d" : {"e" : {"f" : ["s3", "s4"], "g" : 44}, "h" : "2020-02-02 10:00:00"}}}
')
┌─json──────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":1}},"c":"42","d":{"i":["1","2","3"]}} │
│ {"a":{"b":{"c":2}},"d":{"i":["4","5","6"]}} │
│ {"a":{"b":{"c":3}},"e":"Hello, World!"} │
│ {"a":{"b":{"c":4}},"c":"43"} │
│ {"a":{"b":{"c":5}},"d":{"h":"2020-02-02 10:00:00.000000000"}} │
└───────────────────────────────────────────────────────────────┘
For text formats like CSV/TSV/etc JSON
is parsed from a string containing JSON object
SELECT json FROM format(TSV, 'json JSON(a.b.c UInt32, SKIP a.b.d, SKIP REGEXP \'b.*\')',
'{"a" : {"b" : {"c" : 1, "d" : [0, 1]}}, "b" : "2020-01-01", "c" : 42, "d" : {"e" : {"f" : ["s1", "s2"]}, "i" : [1, 2, 3]}}
{"a" : {"b" : {"c" : 2, "d" : [2, 3]}}, "b" : [1, 2, 3], "c" : null, "d" : {"e" : {"g" : 43}, "i" : [4, 5, 6]}}
{"a" : {"b" : {"c" : 3, "d" : [4, 5]}}, "b" : {"c" : 10}, "e" : "Hello, World!"}
{"a" : {"b" : {"c" : 4, "d" : [6, 7]}}, "c" : 43}
{"a" : {"b" : {"c" : 5, "d" : [8, 9]}}, "b" : {"c" : 11, "j" : [1, 2, 3]}, "d" : {"e" : {"f" : ["s3", "s4"], "g" : 44}, "h" : "2020-02-02 10:00:00"}}')
┌─json──────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":1}},"c":"42","d":{"i":["1","2","3"]}} │
│ {"a":{"b":{"c":2}},"d":{"i":["4","5","6"]}} │
│ {"a":{"b":{"c":3}},"e":"Hello, World!"} │
│ {"a":{"b":{"c":4}},"c":"43"} │
│ {"a":{"b":{"c":5}},"d":{"h":"2020-02-02 10:00:00.000000000"}} │
└───────────────────────────────────────────────────────────────┘
Reaching the limit of dynamic paths inside JSON
JSON
data type can store only limited number of paths as separate subcolumns inside. By default, this limit is 1024, but you can change it in type declaration using parameter max_dynamic_paths
.
When the limit is reached, all new paths inserted to JSON
column will be stored in a single shared data structure. It's still possible to read such paths as subcolumns, but it will require reading the whole
shared data structure to extract the values of this path. This limit is needed to avoid the enormous number of different subcolumns that can make the table unusable.
Let's see what happens when the limit is reached in different scenarios.
Reaching the limit during data parsing
During parsing of JSON
object from the data, when the limit is reached for current block of data, all new paths will be stored in a shared data structure. We can check it using introspection functions JSONDynamicPaths, JSONSharedDataPaths
:
SELECT json, JSONDynamicPaths(json), JSONSharedDataPaths(json) FROM format(JSONEachRow, 'json JSON(max_dynamic_paths=3)', '
{"json" : {"a" : {"b" : 42}, "c" : [1, 2, 3]}}
{"json" : {"a" : {"b" : 43}, "d" : "2020-01-01"}}
{"json" : {"a" : {"b" : 44}, "c" : [4, 5, 6]}}
{"json" : {"a" : {"b" : 43}, "d" : "2020-01-02", "e" : "Hello", "f" : {"g" : 42.42}}}
{"json" : {"a" : {"b" : 43}, "c" : [7, 8, 9], "f" : {"g" : 43.43}, "h" : "World"}}
')
┌─json───────────────────────────────────────────────────────────┬─JSONDynamicPaths(json)─┬─JSONSharedDataPaths(json)─┐
│ {"a":{"b":"42"},"c":["1","2","3"]} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"43"},"d":"2020-01-01"} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"44"},"c":["4","5","6"]} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"43"},"d":"2020-01-02","e":"Hello","f":{"g":42.42}} │ ['a.b','c','d'] │ ['e','f.g'] │
│ {"a":{"b":"43"},"c":["7","8","9"],"f":{"g":43.43},"h":"World"} │ ['a.b','c','d'] │ ['f.g','h'] │
└────────────────────────────────────────────────────────────────┴────────────────────────┴───────────────────────────┘
As we can see, after inserting paths e
and f.g
the limit was reached and we inserted them into shared data structure.
During merges of data parts in MergeTree table engines
During merge of several data parts in MergeTree table the JSON
column in the resulting data part can reach the limit of dynamic paths and won't be able to store all paths from source parts as subcolumns.
In this case ClickHouse chooses what paths will remain as subcolumns after merge and what paths will be stored in the shared data structure. In most cases ClickHouse tries to keep paths that contain
the largest number of non-null values and move the rarest paths to the shared data structure, but it depends on the implementation.
Let's see an example of such merge. First, let's create a table with JSON
column, set the limit of dynamic paths to 3
and insert values with 5
different paths:
CREATE TABLE test (id UInt64, json JSON(max_dynamic_paths=3)) engine=MergeTree ORDER BY id;
SYSTEM STOP MERGES test;
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as a) FROM numbers(5);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as b) FROM numbers(4);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as c) FROM numbers(3);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as d) FROM numbers(2);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as e) FROM numbers(1);
Each insert will create a separate data pert with JSON
column containing single path:
SELECT count(), JSONDynamicPaths(json) AS dynamic_paths, JSONSharedDataPaths(json) AS shared_data_paths, _part FROM test GROUP BY _part, dynamic_paths, shared_data_paths ORDER BY _part ASC
┌─count()─┬─dynamic_paths─┬─shared_data_paths─┬─_part─────┐
│ 5 │ ['a'] │ [] │ all_1_1_0 │
│ 4 │ ['b'] │ [] │ all_2_2_0 │
│ 3 │ ['c'] │ [] │ all_3_3_0 │
│ 2 │ ['d'] │ [] │ all_4_4_0 │
│ 1 │ ['e'] │ [] │ all_5_5_0 │
└─────────┴───────────────┴───────────────────┴───────────┘
Now, let's merge all parts into one and see what will happen:
SYSTEM START MERGES test;
OPTIMIZE TABLE test FINAL;
SELECT count(), dynamicType(d), _part FROM test GROUP BY _part, dynamicType(d) ORDER BY _part;
┌─count()─┬─dynamic_paths─┬─shared_data_paths─┬─_part─────┐
│ 1 │ ['a','b','c'] │ ['e'] │ all_1_5_2 │
│ 2 │ ['a','b','c'] │ ['d'] │ all_1_5_2 │
│ 12 │ ['a','b','c'] │ [] │ all_1_5_2 │
└─────────┴───────────────┴───────────────────┴───────────┘
As we can see, ClickHouse kept the most frequent paths a
, b
and c
and moved paths e
and d
to shared data structure.
Introspection functions
There are several functions that can help to inspect the content of the JSON column: JSONAllPaths, JSONAllPathsWithTypes, JSONDynamicPaths, JSONDynamicPathsWithTypes, JSONSharedDataPaths, JSONSharedDataPathsWithTypes, distinctDynamicTypes, distinctJSONPaths and distinctJSONPathsAndTypes
Examples
Let's investigate the content of GH Archive dataset for 2020-01-01
date:
SELECT arrayJoin(distinctJSONPaths(json)) FROM s3('s3://clickhouse-public-datasets/gharchive/original/2020-01-01-*.json.gz', JSONAsObject)
┌─arrayJoin(distinctJSONPaths(json))─────────────────────────┐
│ actor.avatar_url │
│ actor.display_login │
│ actor.gravatar_id │
│ actor.id │
│ actor.login │
│ actor.url │
│ created_at │
│ id │
│ org.avatar_url │
│ org.gravatar_id │
│ org.id │
│ org.login │
│ org.url │
│ payload.action │
│ payload.before │
│ payload.comment._links.html.href │
│ payload.comment._links.pull_request.href │
│ payload.comment._links.self.href │
│ payload.comment.author_association │
│ payload.comment.body │
│ payload.comment.commit_id │
│ payload.comment.created_at │
│ payload.comment.diff_hunk │
│ payload.comment.html_url │
│ payload.comment.id │
│ payload.comment.in_reply_to_id │
│ payload.comment.issue_url │
│ payload.comment.line │
│ payload.comment.node_id │
│ payload.comment.original_commit_id │
│ payload.comment.original_position │
│ payload.comment.path │
│ payload.comment.position │
│ payload.comment.pull_request_review_id │
...
│ payload.release.node_id │
│ payload.release.prerelease │
│ payload.release.published_at │
│ payload.release.tag_name │
│ payload.release.tarball_url │
│ payload.release.target_commitish │
│ payload.release.upload_url │
│ payload.release.url │
│ payload.release.zipball_url │
│ payload.size │
│ public │
│ repo.id │
│ repo.name │
│ repo.url │
│ type │
└─arrayJoin(distinctJSONPaths(json))─────────────────────────┘
SELECT arrayJoin(distinctJSONPathsAndTypes(json)) FROM s3('s3://clickhouse-public-datasets/gharchive/original/2020-01-01-*.json.gz', JSONAsObject) SETTINGS date_time_input_format='best_effort'
┌─arrayJoin(distinctJSONPathsAndTypes(json))──────────────────┐
│ ('actor.avatar_url',['String']) │
│ ('actor.display_login',['String']) │
│ ('actor.gravatar_id',['String']) │
│ ('actor.id',['Int64']) │
│ ('actor.login',['String']) │
│ ('actor.url',['String']) │
│ ('created_at',['DateTime']) │
│ ('id',['String']) │
│ ('org.avatar_url',['String']) │
│ ('org.gravatar_id',['String']) │
│ ('org.id',['Int64']) │
│ ('org.login',['String']) │
│ ('org.url',['String']) │
│ ('payload.action',['String']) │
│ ('payload.before',['String']) │
│ ('payload.comment._links.html.href',['String']) │
│ ('payload.comment._links.pull_request.href',['String']) │
│ ('payload.comment._links.self.href',['String']) │
│ ('payload.comment.author_association',['String']) │
│ ('payload.comment.body',['String']) │
│ ('payload.comment.commit_id',['String']) │
│ ('payload.comment.created_at',['DateTime']) │
│ ('payload.comment.diff_hunk',['String']) │
│ ('payload.comment.html_url',['String']) │
│ ('payload.comment.id',['Int64']) │
│ ('payload.comment.in_reply_to_id',['Int64']) │
│ ('payload.comment.issue_url',['String']) │
│ ('payload.comment.line',['Int64']) │
│ ('payload.comment.node_id',['String']) │
│ ('payload.comment.original_commit_id',['String']) │
│ ('payload.comment.original_position',['Int64']) │
│ ('payload.comment.path',['String']) │
│ ('payload.comment.position',['Int64']) │
│ ('payload.comment.pull_request_review_id',['Int64']) │
...
│ ('payload.release.node_id',['String']) │
│ ('payload.release.prerelease',['Bool']) │
│ ('payload.release.published_at',['DateTime']) │
│ ('payload.release.tag_name',['String']) │
│ ('payload.release.tarball_url',['String']) │
│ ('payload.release.target_commitish',['String']) │
│ ('payload.release.upload_url',['String']) │
│ ('payload.release.url',['String']) │
│ ('payload.release.zipball_url',['String']) │
│ ('payload.size',['Int64']) │
│ ('public',['Bool']) │
│ ('repo.id',['Int64']) │
│ ('repo.name',['String']) │
│ ('repo.url',['String']) │
│ ('type',['String']) │
└─arrayJoin(distinctJSONPathsAndTypes(json))──────────────────┘
ALTER MODIFY COLUMN to JSON type
It's possible to alter an existing table and change the type of the column to the new JSON
type. Right now only alter from String
type is supported.
Example
CREATE TABLE test (json String) ENGINE=MergeTree ORDeR BY tuple();
INSERT INTO test VALUES ('{"a" : 42}'), ('{"a" : 43, "b" : "Hello"}'), ('{"a" : 44, "b" : [1, 2, 3]}')), ('{"c" : "2020-01-01"}');
ALTER TABLE test MODIFY COLUMN json JSON;
SELECT json, json.a, json.b, json.c FROM test;
┌─json─────────────────────────┬─json.a─┬─json.b──┬─json.c─────┐
│ {"a":"42"} │ 42 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │
│ {"a":"43","b":"Hello"} │ 43 │ Hello │ ᴺᵁᴸᴸ │
│ {"a":"44","b":["1","2","3"]} │ 44 │ [1,2,3] │ ᴺᵁᴸᴸ │
│ {"c":"2020-01-01"} │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 2020-01-01 │
└──────────────────────────────┴────────┴─────────┴────────────┘
Comparison between values of the JSON type
Values of the JSON
column cannot be compared by less/greater
functions, but can be compared using equal
function.
Two JSON objects considered equal when they have the same set of paths and value of each path have the same type and value in both objects.
Example:
CREATE TABLE test (json1 JSON(a UInt32), json2 JSON(a UInt32)) ENGINE=Memory;
INSERT INTO test FORMAT JSONEachRow
{"json1" : {"a" : 42, "b" : 42, "c" : "Hello"}, "json2" : {"a" : 42, "b" : 42, "c" : "Hello"}}
{"json1" : {"a" : 42, "b" : 42, "c" : "Hello"}, "json2" : {"a" : 43, "b" : 42, "c" : "Hello"}}
{"json1" : {"a" : 42, "b" : 42, "c" : "Hello"}, "json2" : {"a" : 43, "b" : 42, "c" : "Hello"}}
{"json1" : {"a" : 42, "b" : 42, "c" : "Hello"}, "json2" : {"a" : 42, "b" : 42, "c" : "World"}}
{"json1" : {"a" : 42, "b" : [1, 2, 3], "c" : "Hello"}, "json2" : {"a" : 42, "b" : 42, "c" : "Hello"}}
{"json1" : {"a" : 42, "b" : 42.0, "c" : "Hello"}, "json2" : {"a" : 42, "b" : 42, "c" : "Hello"}}
{"json1" : {"a" : 42, "b" : "42", "c" : "Hello"}, "json2" : {"a" : 42, "b" : 42, "c" : "Hello"}};
SELECT json1, json2, json1 == json2 FROM test;
┌─json1──────────────────────────────────┬─json2─────────────────────────┬─equals(json1, json2)─┐
│ {"a":42,"b":"42","c":"Hello"} │ {"a":42,"b":"42","c":"Hello"} │ 1 │
│ {"a":42,"b":"42","c":"Hello"} │ {"a":43,"b":"42","c":"Hello"} │ 0 │
│ {"a":42,"b":"42","c":"Hello"} │ {"a":43,"b":"42","c":"Hello"} │ 0 │
│ {"a":42,"b":"42","c":"Hello"} │ {"a":42,"b":"42","c":"World"} │ 0 │
│ {"a":42,"b":["1","2","3"],"c":"Hello"} │ {"a":42,"b":"42","c":"Hello"} │ 0 │
│ {"a":42,"b":42,"c":"Hello"} │ {"a":42,"b":"42","c":"Hello"} │ 0 │
│ {"a":42,"b":"42","c":"Hello"} │ {"a":42,"b":"42","c":"Hello"} │ 0 │
└────────────────────────────────────────┴───────────────────────────────┴──────────────────────┘
Tips for better usage of the JSON type
Before creating JSON
column and loading data into it, consider the following tips:
- Investigate your data and specify as many path hints with types as you can. It will make the storage and the reading much more efficient.
- Think about what paths you will need and what paths you will never need. Specify paths that you won't need in the SKIP section and SKIP REGEXP if needed. It will improve the storage.
- Don't set
max_dynamic_paths
parameter to very high values, it can make the storage and reading less efficient.